洛伦兹规范下的场量子化
按照正则量子化的手续,我们定义矢量场的共轭动量为
(819)\[\begin{equation}
\pi^\mu(x) = \frac{\partial {\cal L_{Maxwell+g.f.}}}{\partial \dot A_\mu}
\end{equation}\]
具体到分量上,有
(820)\[\begin{equation}
\pi^0(x) = - \partial_\mu A^\mu
\,, \qquad
\pi^i(x) = F^{i0}(x) = \partial^i A^0(x) - \partial^0 A^i(x)
\end{equation}\]
注意到\(A_\mu\)到共轭动量为\(\pi^\mu\),因此等时对易关系为
(821)\[\begin{equation}
[A_\mu(t, \vec x), \pi^\nu (t, \vec y)] = i \delta_\mu^\nu \delta^3(\vec x - \vec y)
\end{equation}\]
或者
(822)\[\begin{equation}
[A^\mu(t, \vec x), \pi^\nu (t, \vec y)] = i \eta^{\mu\nu} \delta^3(\vec x - \vec y)
\end{equation}\]
其它对易关系为零。
洛伦兹规范下的运动方程
(823)\[\begin{equation}
\Box A^\mu(x) = \partial^\nu \partial_\nu A^\mu(x) = 0
\end{equation}\]
与四组无质量克莱因-戈登方程一致。因此我们可以将\(A^\mu\)作模式展开为
(824)\[\begin{equation}
A^\mu(x) = \int \frac{d^3 k}{(2\pi)^3 2 \omega_k} \sum_{\lambda = 0}^3 \epsilon_\lambda^\mu(\vec k) \left[ a_\lambda(\vec k) e^{- i k \cdot x} + a_\lambda^\dagger(\vec k) e^{i k \cdot x} \right]
\end{equation}\]
其中\(\omega_k = k^0 = |\vec k|\)。为了保持指标平衡,我们还引入费曼规范下的极化矢量
(825)\[\begin{equation}
\epsilon_{0, \mu} = \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0 \end{pmatrix}
\,, \qquad
\epsilon_{1, \mu} = \begin{pmatrix}
0 \\ 1 \\ 0 \\ 0 \end{pmatrix}
\,, \qquad
\epsilon_{2, \mu} = \begin{pmatrix}
0 \\ 0 \\ 1 \\ 0 \end{pmatrix}
\,, \qquad
\epsilon_{3, \mu} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 1 \end{pmatrix}
\end{equation}\]
对应的将洛伦兹指标提升后的极化矢量为
(826)\[\begin{equation}
\epsilon_{0}^\mu = \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0 \end{pmatrix}
\,, \qquad
\epsilon_{1}^\mu = \begin{pmatrix}
0 \\ -1 \\ 0 \\ 0 \end{pmatrix}
\,, \qquad
\epsilon_{2}^\mu = \begin{pmatrix}
0 \\ 0 \\ -1 \\ 0 \end{pmatrix}
\,, \qquad
\epsilon_{3}^\mu = \begin{pmatrix}
0 \\ 0 \\ 0 \\ -1 \end{pmatrix}
\end{equation}\]
它们满足如下关系:
(827)\[\begin{equation}
\epsilon_{\lambda}^\mu \epsilon_{\lambda'}^\nu \eta_{\mu\nu} = \eta_{\lambda\lambda'}
\end{equation}\]
利用这个关系可以求出矢量场产生湮灭算符的对易关系。
简单的计算可以证明,产生湮灭算符可以写为
(828)\[\begin{align}
a_{\lambda}(\vec k) = &\ i \int d^3 x \, \epsilon_\lambda^\mu(\vec k) \eta^{\lambda \lambda} e^{i kx } \overset{\leftrightarrow}{\partial}_0 A_\mu(x)
\\
a_{\lambda}^\dagger(\vec k) = &\ i \int d^3 x \, A^{\mu}(x) \overset{\leftrightarrow}{\partial}_0 e^{-i kx } \epsilon_{\lambda, \mu}(\vec k)\eta^{\lambda \lambda}
\end{align}\]
注意此处的极化指标\(\lambda\)不作求和。利用这个关系,可以验证
(829)\[\begin{equation}
[a_\lambda(\vec k), a_{\lambda'}(\vec k')] = 0
\end{equation}\]
(830)\[\begin{equation}
[a_\lambda^\dagger(\vec k), a_{\lambda'}^\dagger(\vec k')] = 0
\end{equation}\]
剩余的对易关系我们通过如下的计算得到。首先从等时对易关系
(831)\[\begin{equation}
[A_\mu(t, \vec x), A_\nu (t, \vec y)] = 0
\end{equation}\]
得到如下等式
(832)\[\begin{equation}
[ \partial^i A_\mu(t, \vec x), A_\nu (t, \vec y)] = 0
\end{equation}\]
进一步得到下述等式:
(833)\[\begin{align}
[A^0(t, \vec x), \pi^0(t, \vec x)] = &\ [A^0, - \dot A^0 + \partial_i A^i] = - [ A^0, \dot A^0] = i \delta^{(3)} (\vec x - \vec y)
\\
[A^i(t, \vec x), \pi^0(t, \vec y)] = &\ 0 = [A^0, \dot A^0]
\\
[A^0(t, \vec x), \pi^i(t, \vec y)] = &\ [A^0, \partial^i A^0 - \partial^0 A^i] = - [A^0, \dot A^i] = 0
\\
[A^i(t, \vec x), \pi^j(t, \vec y)] = &\ [A^i, \partial^j A^0 - \partial^0 A^j] = - [A^i, \dot A^j] = i \eta^{ij} \delta^{(3)} (\vec x - \vec y)
\end{align}\]
上面的四个关系又可以统一写为:
(834)\[\begin{equation}
[A^\mu(t, \vec x), \dot A^\nu(t, \vec y)] = - i \eta^{\mu\nu} \delta^{(3)} (\vec x - \vec y)
\end{equation}\]
利用这个结果,可以求出产生湮灭算符的对易关系:
(835)\[\begin{align}
[a_\lambda(\vec p), a_{\lambda'}(\vec q)] = &\
i^2 \int d^3 x\, \epsilon_\lambda^\mu(\vec p) \eta^{\lambda \lambda}
\int d^3 y \, \epsilon_{\lambda'}^\nu (\vec q) \eta^{\lambda' \lambda'}
\\
&\ \times e^{i px - i qy} \Big[ \dot A_\mu (x) - i p^0 A_\mu(x) , -iq^0 A_\nu(y) - \dot A_\nu(y) \Big]
\\
=&\ (-1) \int d^3 x\, \epsilon_\lambda^\mu(\vec p) \eta^{\lambda \lambda}
\int d^3 y \, \epsilon_{\lambda'}^\nu (\vec q) \eta^{\lambda' \lambda'}
e^{i px - i qy}
\\
&\ \times e^{i px - i qy} \Big(
-i q^0 i \eta_{\mu \nu} - i p^0 i \eta_{\mu\nu}
\Big) \delta^{(3)}(\vec x - \vec y)
\\
=&\ -(2 \pi)^3 2 p^0 \eta_{\lambda \lambda'} \delta^{(3)}(\vec p - \vec q)
\end{align}\]
我们注意到当\(\lambda = \lambda' = 0\)时,
(836)\[\begin{equation}
[a_0(\vec p), a_0^\dagger(\vec q)] = - (2 \pi)^3 2 p^0 \delta^{(3)}(\vec p - \vec q)
\end{equation}\]
右侧出现的负号意味着\(\lambda=0\)所对应的极化态是非物理的。例如,考虑\(a_0^\dagger\)所产生的单粒子态,
(837)\[\begin{equation}
|k, 0 \rangle = a_0^\dagger(\vec k) |0\rangle
\end{equation}\]
这个态具有负模长:
(838)\[\begin{equation}
\langle q, 0 | k, 0 \rangle = \langle 0 | a_0(\vec q) a_0^\dagger(\vec k) | 0 \rangle = - (2 \pi)^3 2 k^0 \delta^{(3)}( \vec q - \vec k) < 0
\end{equation}\]
因此不能作为物理态存在。
另外,无质量矢量粒子(例如光子)仅有两个物理自由度,而\(a_1^\dagger(\vec k)\),\(a_2^\dagger(\vec k)\),\(a_3^\dagger(\vec k)\)可以产生三个不同的物理态,因此其中必有一个是非物理的。为了回避非物理态的贡献,可以引入Guptar-Bleuler条件:对于任意的物理态\(|\psi_T\rangle\)和\(|\phi_T \rangle\),其中下标\(T\)代表物理态,有
(839)\[\begin{equation}
\langle \psi_T | \partial_\mu A^\mu |\phi_T \rangle = 0
\end{equation}\]
将\(A^\mu\)用模式展开代入,得到
(840)\[\begin{equation}
\int \frac{d^3 k}{(2 \pi)^3 2 \omega_k} \sum_{\lambda = 0}^3 i k_\mu \epsilon_\lambda^\mu(\vec k) \langle \psi_T | a_{\lambda}(\vec k) - a_{\lambda}^\dagger(\vec k) |\phi_T \rangle = 0
\end{equation}\]
或者分别写为
(841)\[\begin{equation}
\sum_{\lambda = 0}^3 k_\mu \epsilon_\lambda^\mu(\vec k) a_{\lambda}(\vec k) |\phi_T \rangle = 0 \,, \qquad \forall k
\end{equation}\]
以及
(842)\[\begin{equation}
\sum_{\lambda = 0}^3 k_\mu \epsilon_\lambda^\mu(\vec k) \langle \psi_T | a_{\lambda}^\dagger(\vec k) = 0 \,, \qquad \forall k
\end{equation}\]
为了看出Guptar-Bleuler条件确实可以排除非物理态对物理量的贡献,不妨考虑自由矢量场的哈密顿量:
(843)\[\begin{equation}
H = \int d^3 x \, {\cal H}(x) = \int^3 d^3x ( \pi^\mu \dot A_\mu - {\cal L}_{Maxwell+g.f.})
\end{equation}\]
通过计算可以发现:
(844)\[\begin{equation}
:H: = \int \frac{d^3 k}{(2\pi)^3 2 \omega_k} \omega_k \left[ \sum_{\lambda = 1}^3 a_\lambda^\dagger(\vec k) a_\lambda(\vec k) -a_0^\dagger(\vec k) a_0(\vec k) \right]
\end{equation}\]
不妨设\(k^\mu = (k^0, 0, 0, k^0)\),则Guptar-Bleuler条件可以写为
(845)\[\begin{equation}
(a_0(\vec k) + a_3(\vec k)) | \phi_T \rangle = 0\,, \qquad \langle \psi_T|
(a_0^\dagger(\vec k) + a_3^\dagger(\vec k)) = 0
\end{equation}\]
方括号中的量在物理态\(|\psi_T\rangle\)中的矩阵元可以写为
(846)\[\begin{align}
\langle \psi_T | \left[ \sum_{\lambda = 1}^3 a_\lambda^\dagger(\vec k) a_\lambda(\vec k) - a_3^\dagger(\vec k)a_0(\vec k) \right] | \psi_T \rangle
=&\ \langle \psi_T | \left[ \sum_{\lambda = 1}^3 a_\lambda^\dagger(\vec k) a_\lambda(\vec k) - (-a_3^\dagger(\vec k)) (- a_3(\vec k)) \right] | \psi_T \rangle
\\
=&\ \langle \psi_T | \left[ \sum_{\lambda = 1}^2 a_\lambda^\dagger(\vec k) a_\lambda(\vec k) \right] | \psi_T \rangle
\end{align}\]
而
(847)\[\begin{equation}
{\cal N}(\vec k) = \left[ \sum_{\lambda = 1}^2 a_\lambda^\dagger(\vec k) a_\lambda(\vec k) \right]
\end{equation}\]
可以理解为物理态中动量模式为\(\vec k\)的态数目算符。因此,\(:H:\)在物理态中确实给出物理自由度的总能量。
最后,我们求一下协变费曼规范下的矢量场传播子,
(848)\[\begin{align}
\langle 0 | T \{A_\mu(x) A_\nu(y) \} | 0 \rangle = &\
\theta(x^0 - y^0) \langle 0 | A_\mu(x) A_\nu(y) | 0 \rangle + \theta(y^0 - x^0) \langle 0 | A_\nu(y) A_\mu(x) | 0 \rangle
\end{align}\]
而
(849)\[\begin{align}
\langle 0 | A^\mu(x) A^\nu(y) | 0 \rangle = &\
\int \frac{d^3 k}{(2\pi)^3 2 \omega_k}
\int \frac{d^3 k'}{(2\pi)^3 2 \omega_{k'}} \sum_{\lambda, \lambda'} \epsilon_\lambda^\mu(\vec k) \epsilon_{\lambda'}^\nu(\vec k') \langle 0 | a_\lambda(\vec k) a_{\lambda'}^\dagger(\vec k) | 0 \rangle e^{-i kx + i k' y}
\\
=&\
\int \frac{d^3 k}{(2\pi)^3 2 \omega_k} \sum_{\lambda, \lambda'} \epsilon_\lambda^\mu(\vec k) \epsilon_{\lambda'}^\nu(\vec k') (-\eta_{\lambda \lambda'}) e^{-i k(x - y)}
\\
=&\
- \eta^{\mu\nu} \int \frac{d^3 k}{(2\pi)^3 2 \omega_k} e^{-i k(x - y)}
\end{align}\]
结合正时序和反时序部分就得到
(850)\[\begin{equation}
\langle 0 | T\{A_\mu(x) A_\nu(y) \} | 0 \rangle = \int \frac{d^4 k}{(2\pi)^4} \frac{-i \eta_{\mu\nu}}{k^2 + i \epsilon} e^{-i k \cdot (x - y)}
\end{equation}\]