狄拉克场的量子化#

自旋统计联系#

自由狄拉克场的量子化#

首先回忆自由狄拉克方程的经典解可以写为

(671)#\[\begin{equation} \psi = u_p e^{-ip\cdot x} + v_p e^{ip\cdot x} \end{equation}\]

其中正频和负频部分的系数为

(672)#\[\begin{equation} u_p^s = \begin{pmatrix} \sqrt{p\cdot \sigma} \xi^s \\ \sqrt{p\cdot \bar\sigma} \xi^s \end{pmatrix}, \quad v_p^s = \begin{pmatrix} \sqrt{p\cdot \sigma} \xi^s \\ -\sqrt{p\cdot \bar\sigma} \xi^s \end{pmatrix} \end{equation}\]

其中

(673)#\[\begin{equation} \xi^1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \xi^2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{equation}\]

狄拉克场的模式展开写为(相对论性归一化下)

(674)#\[\begin{equation} \psi(x) = \int \frac{d^3p}{(2\pi)^3 2 \omega_p} \sum_s \left( a_p^s u_p^s e^{-ip\cdot x} + b_p^{s\dagger} v_p^s e^{ip\cdot x} \right) \end{equation}\]

其中\(\omega_p = p^0 = \sqrt{\vec p^2 + m^2}\)。 相应的还有

(675)#\[\begin{equation} \bar \psi(x) = \int \frac{d^3p}{(2\pi)^3 2 \omega_p} \sum_s \left( \bar u_p^s a_p^{s, \dagger} e^{ip\cdot x} + \bar v_p^s b_p^{s} e^{-ip\cdot x} \right) \end{equation}\]

注意到仅有\(\psi\)的共轭动量是非零的:

(676)#\[\begin{equation} \pi(x) = \frac{\partial \mathcal L}{\partial \dot \psi} = i \psi^\dagger = i \int \frac{d^3p}{(2\pi)^3 2 \omega_p} \sum_s \left( u_p^{s,\dagger} a_p^{s, \dagger} e^{ip\cdot x} + v_p^{s,\dagger} b_p^{s} e^{-ip\cdot x} \right) \end{equation}\]

场的等时正则反对易关系写为(这里采用反对易关系源于自旋统计定理的要求)

(677)#\[\begin{equation} \{ \psi_\alpha(t, \vec x), \pi_\beta(t, \vec y) \} = i \delta^3(\vec x - \vec y) \delta_{\alpha \beta} \end{equation}\]

或者写成

(678)#\[\begin{equation} \{\psi_\alpha(t, \vec x), \psi_\beta^\dagger(t, \vec y) \} = \delta^3(\vec x - \vec y) \delta_{\alpha \beta} \end{equation}\]

其余反对易关系为零。

利用旋量场的正交条件:

(679)#\[\begin{equation} u^{r,\dagger}(p) u^s(p) = 2 \omega_p \delta^{rs}, \quad v^{r,\dagger}(p) v^s(p) = 2 \omega_p \delta^{rs} \end{equation}\]

以及

(680)#\[\begin{equation} u^{r,\dagger}(p^0, \vec{p}) v^s(p^0, - \vec{p}) = 0 \quad v^{r,\dagger}(p^0, \vec{p}) u^s(p^0, - \vec{p}) = 0 \end{equation}\]

可以发现费米子的产生和湮灭算符可写为:

(681)#\[\begin{equation} a_{k}^s = \int d^3 x \, e^{i k \cdot x} u_k^{s,\dagger} \psi(x), \quad a_{k}^{s,\dagger} = \int d^3 x \, e^{-i k \cdot x} \psi^\dagger(x) u_k^{s} \end{equation}\]

利用场的反对易关系,可以得到费米子的产生湮灭算符满足反对易关系:

(682)#\[\begin{equation} \{ a_{k}^s, a_{k'}^{s,\dagger} \} = (2\pi)^3 2 \omega_k \delta^3(\vec k - \vec k') \delta^{ss} \end{equation}\]

而其它反对易子为零。

同样的,对于反费米子有

(683)#\[\begin{equation} b_{k}^s = \int d^3 x \, e^{i k \cdot x} \psi^\dagger(x) v_k^s, \quad b_{k}^{s,\dagger} = \int d^3 x \, e^{-i k \cdot x} v_k^{s,\dagger} \psi(x) \end{equation}\]

通过计算可以发现反费米子的产生湮灭算符满足反对易关系:

(684)#\[\begin{equation} \{ b_{k}^s, b_{k'}^{s,\dagger} \} = (2\pi)^3 2 \omega_k \delta^3(\vec k - \vec k') \delta^{ss} \end{equation}\]

而其它反对易子为零。

狄拉克场的Fock空间#

狄拉克场的Fock空间的构造与实标量场的Fock空间的构造类似,只是需要考虑自旋的影响。用费米子产生算符作用到真空上得到单粒子态:

(685)#\[\begin{equation} |p, s \rangle = a_{p}^{s,\dagger} | 0 \rangle \end{equation}\]

对于双粒子态,有

(686)#\[\begin{equation} |p_1, s_1; p_2, s_2 \rangle = a_{p_1}^{s_1,\dagger} a_{p_2}^{s_2,\dagger} | 0 \rangle \end{equation}\]

注意到由于反对易关系,当\(s_1 \neq s_2\),或\(p_1 \neq p_2\)时,有

(687)#\[\begin{equation} |p_1, s_1; p_2, s_2 \rangle = - |p_2, s_2; p_1, s_1 \rangle \end{equation}\]

泡利不相容原理体现为

(688)#\[\begin{equation} a_p^{s,\dagger} a_p^{s,\dagger} | 0 \rangle = 0 \end{equation}\]

即不存在具有全同动量和极化的双粒子态。 对于反费米子有类似构造。

狄拉克场的哈密顿量#

狄拉克场的哈密顿量密度为

(689)#\[\begin{equation} {\cal H} = \pi \dot \psi - {\cal L} = \bar \psi (-i \vec \gamma \cdot \nabla + m) \psi \end{equation}\]

而哈密顿量为

(690)#\[\begin{equation} H = \int d^3 x \, {\cal H} = \int d^3 x \, \bar \psi (-i \vec \gamma \cdot \nabla + m) \psi \end{equation}\]

将狄拉克场的模式展开代入得到

(691)#\[\begin{align} H = &\ \int d^3x \int \frac{d^3 p}{( 2 \pi)^3 2 \omega_p} \sum_s \left( a_{p,s}^\dagger \bar u_p^s e^{ipx} + b_{p,s} \bar v_p^s e^{ipx} \right) \\ &\ \cdot \left( -i \vec \gamma \cdot \nabla + m \right) \\ &\ \cdot \int \frac{d^3 q}{( 2 \pi)^3 2 \omega_q} \sum_{s'} \left( a_{q,s'} u_q^{s'} e^{-iqx} + b_{q,s'}^\dagger v_q^{s'} e^{-iqx} \right) \end{align}\]

在上式中,借助正交关系,可以计算得到

(692)#\[\begin{align} :H: = &\ \int d^3x \int \frac{d^3 p}{( 2 \pi)^3 2 \omega_p} \omega_p \sum_s \left( a_{p,s}^\dagger a_{p,s} + b_{p,s}^\dagger b_{p,s} \right) \end{align}\]

自由狄拉克场的守恒流#

电荷算符#

狄拉克场的拉氏量具有整体\(U(1)\)对称性:

(693)#\[\begin{equation} \psi(x) \to e^{ - i \alpha} \psi(x), \quad \psi^\dagger(x) \to e^{i \alpha} \psi^\dagger(x) \end{equation}\]

其中\(\alpha\)为任意常数。对应的守恒流为

(694)#\[\begin{equation} j^\mu = - i \frac{\partial {\cal L}}{\partial(\partial_\mu \psi)} = \bar \psi \gamma^\mu \psi \end{equation}\]

守恒荷为

(695)#\[\begin{equation} Q = \int d^3 x j^0 = \int d^3 x \bar \psi \gamma^0 \psi \end{equation}\]

将模式展开代入,得到

(696)#\[\begin{equation} :Q: = \int \frac{d^3 p}{(2\pi)^3} \sum_s \left( a_{p,s}^\dagger a_{p,s} - b_{p,s}^\dagger b_{p,s} \right) \end{equation}\]

因此,\(a_{p,s}^\dagger\)\(b_{p,s}^\dagger\)分别对应正电粒子和负电粒子的产生算符。

角动量#

定义场的洛伦兹变换算符:

(697)#\[\begin{equation} U(\omega) = \exp \left( - \frac{i}{2} \omega_{\mu \nu} M^{\mu \nu} \right) \end{equation}\]

其中\(M_{\mu\nu}\)是洛伦兹变换生成元,\(\omega_{\mu\nu}\)是洛伦兹变换参数。在洛伦兹变换下,狄拉克场变为

(698)#\[\begin{equation} U^{-1}(\omega) \psi(x) U(\omega) = \Lambda_{1/2} (\omega) \psi(\Lambda^{-1} x) \end{equation}\]

其中

(699)#\[\begin{equation} \Lambda_{1/2} (\omega) = \exp \left( - \frac{i}{2} \omega_{\mu\nu} S^{\mu\nu} \right) \end{equation}\]

\(\Lambda^{\mu}_{\ \nu} = \delta^\mu_{\ \nu} + \omega^\mu_{\ \nu}\)是洛伦兹变换矩阵,\(S^{\mu\nu} = \frac{i}{4} [\gamma^\mu, \gamma^\nu]\)。 定义

(700)#\[\begin{equation} \Lambda_{1/2} (\omega) \psi(\Lambda^{-1} x) = \psi(x) + \frac{1}{2}\omega_{\mu\nu} \delta\psi^{\mu\nu} \end{equation}\]

其中\(\omega_{\mu\nu}\)是反对称张量。 容易求得

(701)#\[\begin{equation} \delta \psi^{\mu\nu} = \left[ (x^\mu \partial^\nu - x^\nu \partial^\mu) - i S^{\mu\nu} \right] \psi(x) \end{equation}\]

其中方括号中第一项与轨道角动量有关,第二项与自旋有关。 用洛伦兹变换算符\(M^{\mu\nu}\)表示,则有

(702)#\[\begin{equation} i \left[M^{\mu\nu}, \psi(x)\right] = \left( (x^\mu \partial^\nu - x^\nu \partial^\mu) - i S^{\mu\nu} \right) \psi(x) \end{equation}\]

这时得到六个不同的守恒流

(703)#\[\begin{equation} J^{\rho, \mu\nu} = \frac{\partial {\cal L}}{\partial(\partial_\rho \psi)} \delta\psi^{\mu\nu} = i \bar\psi \gamma^\rho \delta\psi^{\mu\nu} \end{equation}\]

自旋算符可以写为

(704)#\[\begin{equation} S^i = \frac{1}{2} \epsilon^{ijk} \int d^3x J^{0, jk}(x) = \frac{1}{2} \int^3 \psi^\dagger \epsilon^{ijk} S^{jk} \psi \end{equation}\]

利用

(705)#\[\begin{equation} S^{jk} = \frac{1}{2}\begin{pmatrix} \epsilon^{jkl} \sigma^l & 0 \\ 0 & \epsilon^{jkl} \sigma^l \end{pmatrix} \end{equation}\]

可以得到

(706)#\[\begin{equation} S^i = \int d^3x \psi^\dagger \frac{1}{2} \Sigma^i \psi \end{equation}\]

其中

(707)#\[\begin{equation} \Sigma^i = \begin{pmatrix} \sigma^i & 0 \\ 0 & \sigma^i \end{pmatrix} \end{equation}\]

借助自旋算符我们来考察狄拉克场的螺旋度。考虑一个对应费米子的单粒子态

(708)#\[\begin{equation} |k , r \rangle = a_{k,r}^\dagger |0 \rangle \end{equation}\]

不妨设其动量沿\(z\)轴方向,即\(\vec k = (0, 0, k_z)\)。此时自旋算符\(z\)方向投影的作用为

(709)#\[\begin{align} S^3 | k, r \rangle = &\ \int d^3 x \, \psi^\dagger \frac{1}{2} \Sigma^3 \psi | k, r \rangle \end{align}\]

对场作模式展开,且仅需保留费米子的产生湮灭部分,得到

(710)#\[\begin{align} S^3 | k, r \rangle =&\ \int d^3x\, \int \frac{d^3 p}{(2\pi)^3 2 \omega_p} \sum_{s} \left( a_{p,s}^\dagger u_p^{s,\dagger} e^{ipx} \right) \frac{1}{2} \Sigma^3 \int \frac{d^3 q}{(2\pi)^3 2 \omega_q} \sum_{s'} \left( a_{q,s'} u_q^{s'} e^{-iqx} \right) | k, r \rangle \\ = &\ \int \frac{d^3 p}{(2\pi)^3 2 \omega_p 2 \omega_q} \sum_{s} \left( a_{p,s}^\dagger u_p^{s,\dagger} \right) \frac{1}{2} \Sigma^3 \sum_{s'} \left( a_{q,s'} u_q^{s'} \right) a_{k, r}^\dagger | 0 \rangle \\ = &\ \int \frac{d^3 p}{(2\pi)^3 2 \omega_p 2 \omega_q} \sum_{s} \left( a_{p,s}^\dagger u_p^{s,\dagger} \right) \frac{1}{2} \Sigma^3 \sum_{s'} \left( u_q^{s'} \right) (2 \pi)^3 (2 \omega_q) \delta^{3}(\vec q - \vec k) \delta^{s' r} | 0 \rangle \\ =&\ \frac{1}{4 \omega_k} \sum_s u_k^{s,\dagger} \Sigma^3 u_k^{r} a_{k, s}^\dagger |0 \rangle \end{align}\]

利用

(711)#\[\begin{equation} u_k^{s} = \begin{pmatrix} \sqrt{p\cdot \sigma} \xi^s \\ \sqrt{p\cdot \bar\sigma} \xi^s \end{pmatrix} = \begin{pmatrix} \sqrt{\omega_k - k_z} & 0 & 0 & 0 \\ 0 & \sqrt{\omega_k + k_z} & 0 & 0 \\ 0 & 0 & \sqrt{\omega_k + k_z} & 0 \\ 0 & 0 & 0 & \sqrt{\omega_k - k_z} \end{pmatrix} \begin{pmatrix} \xi^s \\ \xi^s \end{pmatrix} \end{equation}\]

得到

(712)#\[\begin{equation} u_k^{s,\dagger} \Sigma^3 u_k^{r} = (\xi^{s,\dagger}, \xi^{s,\dagger}) \begin{pmatrix} \omega_k - k_z & 0 & 0 & 0 \\ 0 & - \omega_k - k_z & 0 & 0 \\ 0 & 0 & \omega_k + k_z & 0 \\ 0 & 0 & 0 & - \omega_k + k_z \end{pmatrix} \begin{pmatrix} \xi^r \\ \xi^r \end{pmatrix} = \begin{cases} \delta^{sr} 2 \omega_k & r = 1 \\ - \delta^{sr}2 \omega_k & r = 2 \\ \end{cases} \end{equation}\]

因此有

(713)#\[\begin{equation} S^3 | k, r \rangle = \begin{cases} \frac{1}{2} | k, r \rangle & r = 1 \\ - \frac{1}{2} | k, r \rangle & r = 2 \end{cases} \end{equation}\]