电荷算符
狄拉克场的拉氏量具有整体\(U(1)\)对称性:
(693)\[\begin{equation}
\psi(x) \to e^{ - i \alpha} \psi(x), \quad \psi^\dagger(x) \to e^{i \alpha} \psi^\dagger(x)
\end{equation}\]
其中\(\alpha\)为任意常数。对应的守恒流为
(694)\[\begin{equation}
j^\mu = - i \frac{\partial {\cal L}}{\partial(\partial_\mu \psi)} = \bar \psi \gamma^\mu \psi
\end{equation}\]
守恒荷为
(695)\[\begin{equation}
Q = \int d^3 x j^0 = \int d^3 x \bar \psi \gamma^0 \psi
\end{equation}\]
将模式展开代入,得到
(696)\[\begin{equation}
:Q: = \int \frac{d^3 p}{(2\pi)^3} \sum_s \left( a_{p,s}^\dagger a_{p,s} - b_{p,s}^\dagger b_{p,s} \right)
\end{equation}\]
因此,\(a_{p,s}^\dagger\)和\(b_{p,s}^\dagger\)分别对应正电粒子和负电粒子的产生算符。
角动量
定义场的洛伦兹变换算符:
(697)\[\begin{equation}
U(\omega) = \exp \left( - \frac{i}{2} \omega_{\mu \nu} M^{\mu \nu} \right)
\end{equation}\]
其中\(M_{\mu\nu}\)是洛伦兹变换生成元,\(\omega_{\mu\nu}\)是洛伦兹变换参数。在洛伦兹变换下,狄拉克场变为
(698)\[\begin{equation}
U^{-1}(\omega) \psi(x) U(\omega) = \Lambda_{1/2} (\omega) \psi(\Lambda^{-1} x)
\end{equation}\]
其中
(699)\[\begin{equation}
\Lambda_{1/2} (\omega) = \exp \left( - \frac{i}{2} \omega_{\mu\nu} S^{\mu\nu} \right)
\end{equation}\]
\(\Lambda^{\mu}_{\ \nu} = \delta^\mu_{\ \nu} + \omega^\mu_{\ \nu}\)是洛伦兹变换矩阵,\(S^{\mu\nu} = \frac{i}{4} [\gamma^\mu, \gamma^\nu]\)。
定义
(700)\[\begin{equation}
\Lambda_{1/2} (\omega) \psi(\Lambda^{-1} x) = \psi(x) + \frac{1}{2}\omega_{\mu\nu} \delta\psi^{\mu\nu}
\end{equation}\]
其中\(\omega_{\mu\nu}\)是反对称张量。
容易求得
(701)\[\begin{equation}
\delta \psi^{\mu\nu} = \left[ (x^\mu \partial^\nu - x^\nu \partial^\mu) - i S^{\mu\nu} \right] \psi(x)
\end{equation}\]
其中方括号中第一项与轨道角动量有关,第二项与自旋有关。
用洛伦兹变换算符\(M^{\mu\nu}\)表示,则有
(702)\[\begin{equation}
i \left[M^{\mu\nu}, \psi(x)\right] = \left( (x^\mu \partial^\nu - x^\nu \partial^\mu) - i S^{\mu\nu} \right) \psi(x)
\end{equation}\]
这时得到六个不同的守恒流
(703)\[\begin{equation}
J^{\rho, \mu\nu} = \frac{\partial {\cal L}}{\partial(\partial_\rho \psi)} \delta\psi^{\mu\nu} = i \bar\psi \gamma^\rho \delta\psi^{\mu\nu}
\end{equation}\]
自旋算符可以写为
(704)\[\begin{equation}
S^i = \frac{1}{2} \epsilon^{ijk} \int d^3x J^{0, jk}(x) = \frac{1}{2} \int^3 \psi^\dagger \epsilon^{ijk} S^{jk} \psi
\end{equation}\]
利用
(705)\[\begin{equation}
S^{jk} = \frac{1}{2}\begin{pmatrix}
\epsilon^{jkl} \sigma^l & 0 \\
0 & \epsilon^{jkl} \sigma^l
\end{pmatrix}
\end{equation}\]
可以得到
(706)\[\begin{equation}
S^i = \int d^3x \psi^\dagger \frac{1}{2} \Sigma^i \psi
\end{equation}\]
其中
(707)\[\begin{equation}
\Sigma^i = \begin{pmatrix}
\sigma^i & 0 \\
0 & \sigma^i
\end{pmatrix}
\end{equation}\]
借助自旋算符我们来考察狄拉克场的螺旋度。考虑一个对应费米子的单粒子态
(708)\[\begin{equation}
|k , r \rangle = a_{k,r}^\dagger |0 \rangle
\end{equation}\]
不妨设其动量沿\(z\)轴方向,即\(\vec k = (0, 0, k_z)\)。此时自旋算符\(z\)方向投影的作用为
(709)\[\begin{align}
S^3 | k, r \rangle = &\ \int d^3 x \, \psi^\dagger \frac{1}{2} \Sigma^3 \psi | k, r \rangle
\end{align}\]
对场作模式展开,且仅需保留费米子的产生湮灭部分,得到
(710)\[\begin{align}
S^3 | k, r \rangle =&\ \int d^3x\, \int \frac{d^3 p}{(2\pi)^3 2 \omega_p} \sum_{s} \left( a_{p,s}^\dagger u_p^{s,\dagger} e^{ipx} \right) \frac{1}{2} \Sigma^3 \int \frac{d^3 q}{(2\pi)^3 2 \omega_q} \sum_{s'} \left( a_{q,s'} u_q^{s'} e^{-iqx} \right) | k, r \rangle
\\
= &\ \int \frac{d^3 p}{(2\pi)^3 2 \omega_p 2 \omega_q} \sum_{s} \left( a_{p,s}^\dagger u_p^{s,\dagger} \right) \frac{1}{2} \Sigma^3 \sum_{s'} \left( a_{q,s'} u_q^{s'} \right) a_{k, r}^\dagger | 0 \rangle
\\
= &\ \int \frac{d^3 p}{(2\pi)^3 2 \omega_p 2 \omega_q} \sum_{s} \left( a_{p,s}^\dagger u_p^{s,\dagger} \right) \frac{1}{2} \Sigma^3 \sum_{s'} \left( u_q^{s'} \right) (2 \pi)^3 (2 \omega_q) \delta^{3}(\vec q - \vec k) \delta^{s' r} | 0 \rangle
\\
=&\ \frac{1}{4 \omega_k} \sum_s u_k^{s,\dagger} \Sigma^3 u_k^{r} a_{k, s}^\dagger |0 \rangle
\end{align}\]
利用
(711)\[\begin{equation}
u_k^{s} = \begin{pmatrix}
\sqrt{p\cdot \sigma} \xi^s \\
\sqrt{p\cdot \bar\sigma} \xi^s
\end{pmatrix}
= \begin{pmatrix}
\sqrt{\omega_k - k_z} & 0 & 0 & 0 \\
0 & \sqrt{\omega_k + k_z} & 0 & 0 \\
0 & 0 & \sqrt{\omega_k + k_z} & 0 \\
0 & 0 & 0 & \sqrt{\omega_k - k_z}
\end{pmatrix}
\begin{pmatrix}
\xi^s \\ \xi^s
\end{pmatrix}
\end{equation}\]
得到
(712)\[\begin{equation}
u_k^{s,\dagger} \Sigma^3 u_k^{r} = (\xi^{s,\dagger}, \xi^{s,\dagger})
\begin{pmatrix}
\omega_k - k_z & 0 & 0 & 0 \\
0 & - \omega_k - k_z & 0 & 0 \\
0 & 0 & \omega_k + k_z & 0 \\
0 & 0 & 0 & - \omega_k + k_z
\end{pmatrix}
\begin{pmatrix}
\xi^r \\ \xi^r
\end{pmatrix} = \begin{cases}
\delta^{sr} 2 \omega_k & r = 1 \\
- \delta^{sr}2 \omega_k & r = 2 \\
\end{cases}
\end{equation}\]
因此有
(713)\[\begin{equation}
S^3 | k, r \rangle = \begin{cases}
\frac{1}{2} | k, r \rangle & r = 1 \\
- \frac{1}{2} | k, r \rangle & r = 2
\end{cases}
\end{equation}\]