附录一:Lehmann–Symanzik–Zimmermann(LSZ)约化公式#

实标量场#

对于实标量场,在相对论性归一化下,其产生湮灭算符在无穷原的过去和未来可以写为

(1028)#\[\begin{align} a_{\vec{k}}^\dagger(+ \infty) - a_{\vec{k}}^\dagger(-\infty) =&\ -i \int d^4x \, e^{- i k \cdot x} (\partial^2 + m^2) \phi(x) \\ a_{\vec{k}}(+ \infty) - a_{\vec{k}}(-\infty) =&\ i \int d^4x \, e^{i k \cdot x} (\partial^2 + m^2) \phi(x) \end{align}\]

狄拉克场#

对于狄拉克场,我们以\(a^\dagger, a\)标记粒子态产生湮灭算符,以\(b^\dagger, b\)标记反粒子的产生湮灭算符,则

(1029)#\[\begin{align} a_{\vec{k}, s}^\dagger(+ \infty) - a_{\vec{k}, s}^\dagger(-\infty) =&\ - i \int d^4x \, \bar\psi(x) (i \overset{\leftarrow}{\partial_\mu} \gamma^\mu + m ) u_s(k) e^{- i k \cdot x} \\ a_{\vec{k}, s}(+ \infty) - a_{\vec{k}, s}(-\infty) =&\ i \int d^4x\, e^{ikx} \bar u_s(k) (- i \partial_\mu \gamma^\mu + m ) \psi(x) \\ b_{\vec{k}, s}^\dagger(+ \infty) - b_{\vec{k}, s}^\dagger(-\infty) =&\ i \int d^4x \, e^{ - i k \cdot x} \bar v_s(k ) ( - i \partial_\mu \gamma^\mu + m ) \psi(x) \\ b_{\vec{k}, s}(+ \infty) - b_{\vec{k}, s}(-\infty) =&\ - i \int d^4x \, \bar\psi(x) (i \overset{\leftarrow}{\partial_\mu} \gamma^\mu + m ) v_s(k) e^{i k \cdot x} \end{align}\]

矢量场#

在费曼规范下,

(1030)#\[\begin{align} a^{\lambda,\dagger}(k) (+ \infty) - a^{\lambda,\dagger}(k) (- \infty) =&\ -i \int d^4x \, \epsilon^\mu(k, \lambda) \eta^{\lambda \lambda} e^{- ikx} \partial^2 A_\mu(x)\\ a^\lambda(k) (+ \infty) - a^\lambda(k) (- \infty) =&\ i \int d^4x \, \epsilon^\mu(k, \lambda) \eta^{\lambda \lambda} e^{ikx} \partial^2 A_\mu(x) \end{align}\]