散射与S矩阵#

到目前为止,我们的课程讨论集中在定域场的关联函数上:

(459)#\[\begin{equation} \langle \Omega | T \phi(x_1) \phi(x_2) \cdots \phi(x_n) | \Omega \rangle \end{equation}\]

但在粒子物理学中,我们更关心的是散射实验。粒子在无穷远的过去入射,在一个时间和空间的区域内发生相互作用,然后在无穷远的未来出射。如何通过关联函数来描述散射实验,是我们本章的主要内容。

相对论性归一化#

自由理论中的单粒子态:

(460)#\[\begin{equation} | \mathbf{k} \rangle = a^\dagger(\mathbf{k}) | 0 \rangle \end{equation}\]

其中\(| 0 \rangle\)是真空态,\(a^\dagger(\mathbf{k})\)是动量为\(\mathbf{k}\)的粒子的产生算符。定义相对论性归一化态:

(461)#\[\begin{equation} \alpha_{\mathbf{k}} = (2 \pi)^{3/2} \sqrt{2 \omega_k} a^\dagger(\mathbf{k}) \end{equation}\]
(462)#\[\begin{equation} |k \rangle = \alpha_{\mathbf{k}} | 0 \rangle \end{equation}\]
(463)#\[\begin{equation} \langle k' | k \rangle = (2 \pi)^3 2 \omega_k \delta^3(\mathbf{k} - \mathbf{k}') \end{equation}\]

在相对论性归一化下,场的模式展开写为

(464)#\[\begin{equation} \phi(x) = \int \frac{d^3 k}{(2 \pi)^3 2 \omega_k} \left( \alpha_{\mathbf{k}} e^{-i k \cdot x} + \alpha_{\mathbf{k}}^\dagger e^{i k \cdot x} \right) \end{equation}\]

其中\(k^0 = \omega_k = \sqrt{\mathbf{k}^2 + m^2}\)。 我们关心如何从场定义产生湮灭算符。为此, 定义如下求导算符:

(465)#\[\begin{equation} f \overset{\leftrightarrow}{\partial} g \equiv f \partial g - (\partial f) g \end{equation}\]

因此有关系:

(466)#\[\begin{equation} e^{-ik\cdot x} \overset{\leftrightarrow}{\partial_0} \phi(x) = e^{-i k \cdot x} \int \frac{d^3 p}{(2 \pi)^3 2 \omega_p} \left( (i \omega_k -i \omega_p) \alpha_{\mathbf{p}} e^{-i p \cdot x} + (i \omega_k + i \omega_p) \alpha_{\mathbf{p}}^\dagger e^{i p \cdot x} \right) \end{equation}\]

从中可以解出:

(467)#\[\begin{equation} \alpha^\dagger_{\mathbf{k}} = -i \int d^3 x e^{- i k \cdot x} \overset{\leftrightarrow}{\partial_0} \phi(x) \end{equation}\]

上述产生算符给出的是一个平面波态。实际应用中,需要将平面波态叠加为一个波包态。例如:

(468)#\[\begin{equation} \tilde{\alpha}^\dagger_{\mathbf{k}} = \mathcal{N} \int d^3 k' \exp\left[ - \frac{(\mathbf{k} - \mathbf{k}')^2}{4 \sigma^2} \right] \alpha^\dagger_{\mathbf{k}'} \end{equation}\]

我们后面的讨论主要以平面波态为例,但应记住实际散射过程中的态是波包态。

上面的讨论局限在自由理论中。下面我们考虑相互作用理论,此时我们定义含时产生算符

(469)#\[\begin{equation} \alpha^\dagger_{\mathbf{k}}(t) = -i \int d^3 x e^{- i k \cdot x} \overset{\leftrightarrow}{\partial_0} \phi(x) \end{equation}\]

可以认为,在无穷远的过去,相互作用理论中的产生算符过渡到自由理论的产生算符:

(470)#\[\begin{equation} \lim_{t \to -\infty} \alpha^\dagger_{\mathbf{k}}(t) = \alpha^\dagger_{\mathbf{k}} \end{equation}\]

而其后的时间演化性质由完整相互作用场\(\phi(x)\)的时间演化决定。特别的,\(\alpha^\dagger_{\mathbf{k}}(t)\)对应的单粒子态的产生算符,这个假设是否成立需有进一步讨论。

散射态#

入射态:

(471)#\[\begin{equation} | i \rangle_{-\infty} = \alpha^\dagger_{\mathbf{p}_1}(-\infty) \alpha^\dagger_{\mathbf{p}_2}(-\infty) \cdots \alpha^\dagger_{\mathbf{p}_n} (-\infty) | \Omega \rangle \end{equation}\]

出射态:

(472)#\[\begin{equation} | f \rangle_\infty = \alpha^\dagger_{\mathbf{q}_1}(\infty) \alpha^\dagger_{\mathbf{q}_2}(\infty) \cdots \alpha^\dagger_{\mathbf{q}_m} (\infty) | \Omega \rangle \end{equation}\]

薛定谔绘景中的跃迁振幅:

(473)#\[\begin{equation} \lim_{T \to \infty} \,_T\langle f | i \rangle_{-T} \end{equation}\]

更方便描述是去到海森堡绘景,在海森堡绘景中态是不含时的:

(474)#\[\begin{equation} | i \rangle_{t=0} = e^{-i H T} | i \rangle_{-T} \,, \quad | f \rangle_{t=0} = e^{-i H T} | f \rangle_{T} \end{equation}\]

因此可以在海森堡绘景中计算跃迁振幅:

(475)#\[\begin{equation} \lim_{T \to \infty} \,_T\langle f | i \rangle_{-T} = \lim_{T \to \infty} \,_{t=0}\langle f | e^{-2 i H T} | i \rangle_{t=0} \equiv \langle f | S | i \rangle \end{equation}\]

其中\(S\)是S矩阵,可以写为

(476)#\[\begin{equation} S = \mathbf{1} + i {\cal T} \end{equation}\]

其中\(\mathbf{1}\)对应跃迁振幅振符中的自由理论部分,\({\cal T}\)对应相互作用部分。计算S矩阵的目标是计算\({\cal T}\)。动量守恒性质告诉我们,一般性的\({\cal T}\)可以写为:

(477)#\[\begin{equation} {\cal T} = \delta^{(4)} (p_1 + p_2 + \cdots + p_n - q_1 - q_2 - \cdots - q_m) \mathcal{M}_{fi} \end{equation}\]

其中散射振幅\(\mathcal{M}_{fi}\)是入射和出射动量的函数。

LSZ约化公式#

LSZ约化公式给出了散射振幅与关联函数的关系。推导LSZ约化公式的核心来自如下等式:

(478)#\[\begin{align} \alpha_{\mathbf{k}}^\dagger(+ \infty) - \alpha_{\mathbf{k}}^\dagger(-\infty) =&\ \int_{-\infty}^\infty dt\, \partial_0 \alpha_{\mathbf{k}}^\dagger(t) \nonumber \\ =&\ -i \int_{-\infty}^\infty dt\, \int d^3 x\, \partial_0 \left( e^{-i k \cdot x} \overset{\leftrightarrow}{\partial_0} \phi(x) \right) \nonumber \\ =&\ -i \int d^4 x\, e^{-i k \cdot x} \left( - (i k^0)^2 + (\partial_0)^2 \right) \phi(x) \nonumber \\ =&\ -i \int d^4 x\, e^{-i k \cdot x} \left( \mathbf{k}^2 + m^2 +(\partial_0)^2 \right) \phi(x) \nonumber \\ =&\ -i \int d^4 x\, e^{-i k \cdot x} \left( - \overset{\leftarrow}{\nabla}^2 + m^2 + (\partial_0)^2\right) \phi(x) \nonumber \\ =&\ -i \int d^4 x\, e^{-i k \cdot x} \left( - \overset{\rightarrow}{\nabla}^2 + m^2 + (\partial_0)^2 \right) \phi(x) \nonumber \\ =&\ -i \int d^4 x\, e^{-i k \cdot x} \left( \partial_\mu \partial^\mu + m^2 \right) \phi(x) \end{align}\]

注意到对于自由场,满足克莱因-戈登方程,最后一个等式为零,也就是产生算符不含时。但对于相互作用场则不成立。类似的,对于湮灭算符我们也能得到:

(479)#\[\begin{equation} \alpha_{\mathbf{k}}(+ \infty) - \alpha_{\mathbf{k}}(-\infty) = i \int d^4 x\, e^{i k \cdot x} \left( \partial_\mu \partial^\mu + m^2 \right) \phi(x) \end{equation}\]

\(2 \to 2\)散射为例:

(480)#\[\begin{equation} p_1 + p_2 \to q_1 + q_2 \end{equation}\]

我们有:

(481)#\[\begin{align} \langle f | S | i \rangle = &\ \langle \Omega | \alpha_{\mathbf{q}_1}(\infty) \alpha_{\mathbf{q}_2}(\infty) \alpha_{\mathbf{p}_1}^\dagger(-\infty) \alpha_{\mathbf{p}_2}^\dagger(-\infty) | \Omega \rangle \nonumber \\ =&\ \langle \Omega | T \alpha_{\mathbf{q}_1}(\infty) \alpha_{\mathbf{q}_2}(\infty) \alpha_{\mathbf{p}_1}^\dagger(-\infty) \alpha_{\mathbf{p}_2}^\dagger(-\infty) | \Omega \rangle \nonumber \\ =&\ \langle \Omega | T i \int d^4 x_1 \, e^{i q_1 \cdot x_1} \left( \partial^2_{x_1} + m^2 \right) \phi(x_1) \nonumber \\ &\ \times i \int d^4 x_2 \, e^{i q_2 \cdot x_2} \left( \partial_{x_2}^2 + m^2 \right) \phi(x_2) \nonumber \\ &\ \times i \int d^4 y_1 \, e^{- i p_1 \cdot y_1} \left( \partial_{y_1}^2 + m^2 \right) \phi(y_1) \nonumber \\ &\ \times i \int d^4 y_2 \, e^{- i p_2 \cdot y_2} \left( \partial_{y_2}^2 + m^2 \right) \phi(y_2) | \Omega \rangle \nonumber \\ =&\ i^4 \int d^4 x_1 \, d^4 x_2 \, d^4 y_1 \, d^4 y_2 \, e^{i (q_1 \cdot x_1 + q_2 \cdot x_2 - p_1 \cdot y_1 - p_2 \cdot y_2)} \nonumber \\ &\ \times \left( \partial^2_{x_1} + m^2 \right) \left( \partial_{x_2}^2 + m^2 \right) \left( \partial_{y_1}^2 + m^2 \right) \left( \partial_{y_2}^2 + m^2 \right) \nonumber \\ &\ \times \langle \Omega | T \phi(x_1) \phi(x_2) \phi(y_1) \phi(y_2) | \Omega \rangle \end{align}\]

如果引入动量空间的关联函数:

(482)#\[\begin{equation} \langle \Omega | T \phi(x_1) \phi(x_2) \phi(y_1) \phi(y_2) | \Omega \rangle = \int \frac{d^4 k_1}{(2\pi)^4} \frac{d^4 k_2}{(2\pi)^4} \frac{d^4 k_3}{(2\pi)^4} \frac{d^4 k_4}{(2\pi)^4} e^{-i (k_3 \cdot x_1 + k_4 \cdot x_2 - k_1 \cdot y_1 - k_2 \cdot y_2)} G(k_1, k_2, k_3, k_4) \end{equation}\]

代入S矩阵元中得到:

(483)#\[\begin{align} \langle f | S | i \rangle = &\ i^4 \int d^4 x_1 \, d^4 x_2 \, d^4 y_1 \, d^4 y_2 \, e^{i (q_1 \cdot x_1 + q_2 \cdot x_2 - p_1 \cdot y_1 - p_2 \cdot y_2)} \nonumber \\ &\ \times \left( \partial^2_{x_1} + m^2 \right) \left( \partial_{x_2}^2 + m^2 \right) \left( \partial_{y_1}^2 + m^2 \right) \left( \partial_{y_2}^2 + m^2 \right) \nonumber \\ &\ \times \int \frac{d^4 k_1}{(2\pi)^4} \frac{d^4 k_2}{(2\pi)^4} \frac{d^4 k_3}{(2\pi)^4} \frac{d^4 k_4}{(2\pi)^4} e^{-i (k_3 \cdot x_1 + k_4 \cdot x_2 - k_1 \cdot y_1 - k_2 \cdot y_2)} G(k_1, k_2, k_3, k_4) \nonumber \\ =&\ i^4 \int d^4 x_1 \, d^4 x_2 \, d^4 y_1 \, d^4 y_2 \, e^{i (q_1 \cdot x_1 + q_2 \cdot x_2 - p_1 \cdot y_1 - p_2 \cdot y_2)} \nonumber \\ &\ \times \left( -k_3^2 + m^2 \right) \left( -k_4^2 + m^2 \right) \left( -k_1^2 + m^2 \right) \left( -k_2^2 + m^2 \right) \nonumber \\ &\ \times \int \frac{d^4 k_1}{(2\pi)^4} \frac{d^4 k_2}{(2\pi)^4} \frac{d^4 k_3}{(2\pi)^4} \frac{d^4 k_4}{(2\pi)^4} e^{-i (k_3 \cdot x_1 + k_4 \cdot x_2 - k_1 \cdot y_1 - k_2 \cdot y_2)} G(k_1, k_2, k_3, k_4) \nonumber \\ =&\ i^4 \int d^4 k_1 \, d^4 k_2 \, d^4 k_3 \, d^4 k_4 \, \delta^{(4)}(k_3 -q_1) \delta^{(4)}(k_4 - q_2) \delta^{(4)}(k_1 - p_1) \delta^{(4)}(k_2 - p_2) \nonumber \\ &\ \times \left( -k_3^2 + m^2 \right) \left( -k_4^2 + m^2 \right) \left( -k_1^2 + m^2 \right) \left( -k_2^2 + m^2 \right) G(k_1, k_2, k_3, k_4) \nonumber \\ =&\ i^4 \left( -q_1^2 + m^2 \right) \left( -q_2^2 + m^2 \right) \left( -p_1^2 + m^2 \right) \left( -p_2^2 + m^2 \right) G(p_1, p_2, q_1, q_2) \end{align}\]

这个结果可以推广到一般的\(n \to m\)散射过程:

(484)#\[\begin{align} \langle f | S | i \rangle = &\ i^{n+ m} \prod_{j=1}^n \left( -q_j^2 + m^2 \right) \prod_{k=1}^m \left( -p_k^2 + m^2 \right) G(p_1, \cdots, p_n , q_1, \cdots, q_m) \end{align}\]

这就是实标量场LSZ约化公式,其中\(G(p_1, \cdots, p_n , q_1, \cdots, q_m)\)可以通过动量空间费曼规则直接得到。